
© 2021 Canonical Ltd. / atsec information security

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 20.04 OpenSSL Cryptographic Module

version 3.1

FIPS 140-2 Non-Proprietary Security Policy

Version 1.2

Last update: 2022-03-01

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 2 of 57

Table of Contents

1. Cryptographic Module Specification .. 5

1.1. Module Overview .. 5

1.2. Modes of Operation .. 8

2. Cryptographic Module Ports and Interfaces .. 9

3. Roles, Services and Authentication ... 10

3.1. Roles ... 10

3.2. Services .. 10

3.3. Algorithms .. 13

3.3.1. Ubuntu 20.04 LTS 64-bit Running on Intel(R) Xeon(R) Gold 6226 13

3.3.2. Ubuntu 20.04 LTS 64-bit Running on IBM z15 ... 19

3.3.3. Allowed Algorithms .. 25

3.3.4. Non-Approved Algorithms .. 26

3.4. Operator Authentication ... 27

4. Physical Security ... 28

5. Operational Environment ... 29

5.1. Applicability .. 29

5.2. Policy .. 29

6. Cryptographic Key Management .. 30

6.1. Random Number Generation .. 31

6.2. Key Generation .. 32

6.3. Key Agreement / Key Transport / Key Derivation .. 32

6.4. Key Entry / Output .. 34

6.5. Key / CSP Storage .. 34

6.6. Key / CSP Zeroization ... 34

7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) 35

8. Self-Tests .. 36

8.1. Power-Up Tests .. 36

8.1.1. Integrity Tests .. 36

8.1.2. Cryptographic Algorithm Tests .. 36

8.2. On-Demand Self-Tests ... 38

8.3. Conditional Tests ... 38

9. Guidance .. 39

9.1. Crypto Officer Guidance .. 39

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 3 of 57

9.1.1. Operating Environment Configurations ... 39

9.1.2. Module Installation ... 40

9.2. User Guidance .. 41

9.2.1. TLS .. 41

9.2.2. AES-GCM’s IV .. 41

9.2.3. AES-XTS ... 41

9.2.4. Triple-DES ... 41

9.2.5. Key derivation using SP800-132 PBKDF ... 41

9.2.6. API Functions ... 42

9.2.7. Use of ciphers ... 42

9.2.8. Environment Variables ... 43

9.2.9. Handling FIPS Related Errors .. 43

10. Mitigation of Other Attacks .. 45

10.1. Blinding Against RSA Timing Attacks .. 45

10.2. Weak Triple-DES Keys Detection ... 45

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 4 of 57

Copyrights and Trademarks
Ubuntu and Canonical are registered trademarks of Canonical Ltd.

Linux is a registered trademark of Linus Torvalds.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 5 of 57

1. Cryptographic Module Specification
This document is the non-proprietary FIPS 140-2 Security Policy for version 3.1 of the Ubuntu 20.04
OpenSSL Cryptographic Module. It contains the security rules under which the module must operate
and describes how this module meets the requirements as specified in FIPS PUB 140-2 (Federal
Information Processing Standards Publication 140-2) for a Security Level 1 software module.

The following sections describe the cryptographic module and how it conforms to the FIPS 140-2
specification in each of the required areas.

1.1. Module Overview
The Ubuntu 20.04 OpenSSL Cryptographic Module (hereafter referred to as “the module”) is a set of
software libraries implementing the Transport Layer Security (TLS) protocol v1.0, v1.1, v1.2 and v1.3
and Datagram Transport Layer Security (DTLS) protocol v.1.0, v1.2 and v1.3, as well as general
purpose cryptographic algorithms. The module provides cryptographic services to applications
running in the user space of the underlying Ubuntu operating system through a C language
Application Program Interface (API). The module utilizes processor instructions to optimize and
increase performance. The module can act as a TLS server or client, and interacts with other entities
via TLS/DTLS network protocols.

For the purpose of the FIPS 140-2 validation, the module is a software-only, multi-chip standalone
cryptographic module validated at overall security level 1. The table below shows the security level
claimed for each of the eleven sections that comprise the FIPS 140-2 standard.

FIPS 140-2 Section Security
Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks 1

Overall Level 1

Table 1 - Security Levels

The cryptographic logical boundary consists of all shared libraries and the integrity check files used
for Integrity Tests. The following table enumerates the files that comprise the module.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 6 of 57

Component Description

libssl.so.1.1 Shared library for TLS/DTLS network protocols.

libcrypto.so.1.1 Shared library for cryptographic implementations.

.libssl.so.1.1.hmac Integrity check signature for libssl shared library.

.libcrypto.so.1.1.hmac Integrity check signature for libcrypto shared library.

Table 2 - Cryptographic Module Components

The software block diagram below shows the module, its interfaces with the operational
environment and the delimitation of its logical boundary, comprised of all the components within
the BLUE box.

Figure 1 - Software Block Diagram

The module is aimed to run on a general purpose computer (GPC); the physical boundary of the
module is the tested platforms. Figure 2 shows the major components of a GPC.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 7 of 57

Figure 2 - Cryptographic Module Physical Boundary

The module has been tested on the test platforms shown below.

Test Platform Processor Test Configuration

Supermicro SYS-1019P-WTR Intel(R) Xeon(R) Gold
6226

Ubuntu 20.04 LTS 64-bit with/without
PAA

IBM z15 IBM z15 Ubuntu 20.04 LTS 64-bit with/without PAI

Table 3 - Tested Platforms

Note: Per FIPS 140-2 IG G.5, the Cryptographic Module Validation Program (CMVP) makes no
statement as to the correct operation of the module or the security strengths of the generated keys
when this module is ported and executed in an operational environment not listed on the validation
certificate.

The platforms listed in the table below have not been tested as part of the FIPS 140-2 level 1
certification. Canonical “vendor affirms” that these platforms are equivalent to the tested and
validated platforms.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 8 of 57

Test Platform Processor Test Configuration

Supermicro SYS-1019P-WTR Intel(R) Xeon(R) Platinum
8171M CPU @ 2.60GHz

Ubuntu 20.04 LTS 64-bit with/without
PAA

Supermicro SYS-1019P-WTR Intel(R) Xeon(R) CPU E5 Ubuntu 20.04 LTS 64-bit with/without
PAA

Table 4 - Vendor Affirmed Platforms

1.2. Modes of Operation
The module supports two modes of operation:

• FIPS mode (the Approved mode of operation): only approved or allowed security functions
with sufficient security strength can be used.

• non-FIPS mode (the non-Approved mode of operation): only non-approved security
functions can be used.

The module enters FIPS mode after power-up tests succeed. Once the module is operational, the
mode of operation is implicitly assumed depending on the security function invoked and the
security strength of the cryptographic keys.

Critical security parameters used or stored in FIPS mode are not used in non-FIPS mode, and vice
versa.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 9 of 57

2. Cryptographic Module Ports and Interfaces
As a software-only module, the module does not have physical ports. For the purpose of the FIPS
140-2 validation, the physical ports are interpreted to be the physical ports of the hardware
platform on which it runs.

The logical interfaces are the API through which applications request services, and messages sent
and received from the TCP/IP protocol. The following table summarizes the four logical interfaces.

FIPS Interface Physical Port Logical Interface

Data Input Ethernet ports API input parameters, kernel I/O – network
or files on file system, TLS protocol input
messages.

Data Output Ethernet ports API output parameters, kernel I/O –
network or files on file system, TLS
protocol output messages.

Control Input Keyboard, Serial port, Ethernet
port, Network

API function calls, API input parameters for
control.

Status Output Serial port, Ethernet port,
Network

API return codes.

Power Input PC Power Supply Port N/A

Table 5 - Ports and Interfaces

Note: The module is an implementation of the TLS protocol as defined in the RFC standards. The
TLS protocol provides confidentiality and data integrity between communicating applications. When
an application calls into the module’s API, the data passed will be securely passed to the peer.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 10 of 57

3. Roles, Services and Authentication

3.1. Roles
The module supports the following roles:

• User role: performs cryptographic services (in both FIPS mode and non-FIPS mode), TLS
network protocol, key zeroization, get status, and on-demand self-test.

• Crypto Officer role: performs module installation .

The User and Crypto Officer roles are implicitly assumed by the entity accessing the module
services.

3.2. Services
The module provides services to users that assume one of the available roles. All services are shown
in Table 6 and Table 7, and described in detail in the user documentation (i.e., man pages)
referenced in section 9.1.

The table below shows the services available in FIPS mode. For each service, the associated
cryptographic algorithms, the roles to perform the service, and the cryptographic keys or Critical
Security Parameters and their access rights are listed. The following convention is used to specify
access rights to a CSP:

• Create: the calling application can create a new CSP.

• Read: the calling application can read the CSP.

• Update: the calling application can write a new value to the CSP.

• Zeroize: the calling application can zeroize the CSP.

• n/a: the calling application does not access any CSP or key during its operation.

The complete list of cryptographic algorithms, modes and key lengths, and their corresponding
Cryptographic Algorithm Validation Program (CAVP) certificate numbers can be found in Table 8
and Table 9 of this security policy. Notice that the algorithms mentioned in the Network Protocol
Services correspond to the same implementation of the algorithms described in the Cryptographic
Library Services.

Service Algorithms Role Access Keys/CSP

Cryptographic Library Services

Symmetric Encryption
and Decryption

AES User Read AES key

Triple-DES User Read Triple-DES key

RSA key generation RSA, DRBG User Create RSA public-private key

RSA digital signature
generation and
verification

RSA User Read RSA public-private key

DSA key generation DSA, DRBG User Create DSA public-private key

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 11 of 57

Service Algorithms Role Access Keys/CSP

DSA domain parameter
generation and
verification

DSA User n/a n/a

DSA digital signature
generation and
verification

DSA User Read DSA public-private key

ECDSA key generation ECDSA, DRBG User Create ECDSA public-private key

ECDSA public key
validation

ECDSA User Read ECDSA public key

ECDSA signature
generation and
verification

ECDSA User Read ECDSA public and private
keys

Random number
generation

DRBG User Read,
Update

Entropy input string,
seed, Internal state

Message digest SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512
SHA3-224, SHA3-256,
SHA3-384, SHA3-512,
SHAKE-128, SHAKE-
256

User n/a n/a

Message
authentication code
(MAC)

HMAC User Read HMAC key

AES-GMAC User Read AES key

AES-CMAC User Read AES key

Triple-DES-CMAC User Read Triple-DES key

Key wrapping AES-KW, AES-KWP User Read AES key

Key encapsulation RSA User Read RSA public and private
keys

Diffie-Hellman Shared
Secret Computation

KAS-FFC-SSC User Create,
Read

Diffie-Hellman public and
private keys, shared
secret

Safe Primes Key
Generation and
Verification

 User Create,
Read

Diffie-Hellman Domain
Parameters and key pair

EC Diffie-Hellman
Shared Secret
Computation

KAS-ECC-SSC User Create,
Read

EC Diffie-Hellman public
and private keys, shared
secret

Key Derivation
Function

PBKDF2 User Create,
Read

Password, PBKDF2
derived key

SSH KDF User Create,
Read

Shared secret, SSH KDF
derived key

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 12 of 57

Service Algorithms Role Access Keys/CSP

HKDF User Create,
Read

Shared secret, HKDF
derived key

KDF TLS User Create,
Read

Shared secret, KDF TLS
derived key

Network Protocols Services

Transport Layer
Security (TLS) network
protocol v1.0, v1.1,
v1.2 and v1.3

See Appendix A for
the complete list of
supported cipher
suites.

User Create,
Read

AES or Triple-DES key,
RSA, DSA or ECDSA
public-private key, HMAC
Key, shared secret, TLS
master secret,
Diffie-Hellman or EC
Diffie-Hellman public and
private keys

TLS extensions n/a User Read RSA, DSA or ECDSA
public and private keys

Certificates
management

n/a User Read RSA, DSA or ECDSA
public and private keys

Other FIPS-Related Services

Show status n/a User n/a None

Zeroization n/a User Zeroize All CSPs

Self-Tests AES, Triple-DES, SHS,
HMAC, DSA, RSA,
ECDSA, DRBG, Diffie-
Hellman, EC Diffie-
Hellman, TLS KDF,
PBKDF, SSH KDF

User n/a None

Module installation n/a Crypto
Officer

n/a None

Module initialization n/a User n/a None

Table 6 - Services in FIPS mode of operation

The table below lists the services only available in non-FIPS mode of operation.

Service Algorithms / Key sizes Role Access Keys

Cryptographic Library Services

Symmetric encryption and
decryption

ARIA, Blowfish, Camellia,
CAST, CAST5, ChaCha20,
DES, RC2, RC4, SEED, SM4,
Chacha20 and Poly1305

User Read Symmetric key

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 13 of 57

Service Algorithms / Key sizes Role Access Keys

Symmetric encryption and
decryption

AES-XTS using 192 bit
keys

User Read Symmetric key

Symmetric encryption 2-key Triple-DES listed in
Table 11

User Read 2-key Triple-DES key

Authenticated Encryption
cipher for encryption and
decryption

AES and SHA from multi-
buffer or stitch ciphers
listed in Table 11

User Read AES key, HMAC key

Asymmetric key generation
using keys disallowed by
[SP800-131A]

RSA, DSA, ECDSA listed in
Table 11

User Create RSA, DSA or ECDSA
public and private
keys

Digital signature generation
using message digest or keys
disallowed by [SP800-131A].

RSA, DSA, ECDSA listed in
Table 11

User Read RSA, DSA or ECDSA
private keys

Digital signature verification
using keys disallowed by
[SP800-131A].

DSA listed in Table 11 User Read DSA public key

Digital signature generation
and verification

SM2 User Read SM2 public and private
keys

Key establishment using keys
disallowed by [SP800-131A].

RSA, Diffie-Hellman, EC
Diffie-Hellman listed in
Table 11

User Read Diffie-Hellman, EC
Diffie-Hellman or RSA
public and private
keys

Message digest Blake2, MD4, MD5,
RMD160, SM3

User n/a none

Message authentication code
(MAC) using keys disallowed
by [SP800-131A]

HMAC listed in Table 11,
CMAC with 2-key Triple-
DES

User Read HMAC key, 2-key
Triple-DES key

Table 7 – Services in non-FIPS mode of operation

3.3. Algorithms
The algorithms implemented in the module are tested and validated by the CAVP for the operating
environments listed in Table 3.

The Ubuntu 20.04 OpenSSL Cryptographic Module is compiled to use the support from the
processor and assembly code for AES, SHA and GHASH operations to enhance the performance of
the module. Different implementations can be invoked by using a processor capability mask in the
operational environment. Please note that only one AES, SHA and/or GHASH implementation can be
executed in runtime.

Notice that for the Transport Layer Security (TLS) and the Secure Shell (SSH) protocols, no parts of
these protocols, other than the key derivation functions (KDF), have been tested by the CAVP.

3.3.1. Ubuntu 20.04 LTS 64-bit Running on Intel(R) Xeon(R) Gold 6226

On the platform that runs the Intel Xeon processor, the module supports the use of AES-NI, SSSE3
and strict assembler for AES implementation, the use of AVX2, AVX, SSSE3 and strict assembler for
SHA implementation (SSSE3 implementation is only for SHA-1, SHA-224 and SHA-256), and the use
of CLMUL instruction set and strict assembler for GHASH that is used for GCM mode. The module

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 14 of 57

uses the most efficient implementation based on the processor’s capability; this behavior can be
also controlled through the use of the capability mask environment variable OPENSSL_ia32cap.

The following table shows all algorithms with the associated CAVP certificates for the different
implementations validated in the module. See Appendix B for a description of each implementation.

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

AES ECB 128, 192, 256

Data Encryption
and Decryption

[FIPS197],
[SP800-38A]

#A1519
#A1520
#A1521
#A1522
#A1527
#A1528
#A1529

CBC, CTR,
CFB1, CFB8,
CFB128, OFB

#A1527
#A1528
#A1529

CMAC MAC Generation
and Verification

[SP800-38B]

CCM Data Encryption
and Decryption

[SP800-38C]

GCM Data Encryption
and Decryption

[SP800-38D] #A1535
#A1536
#A1537
#A1538
#A1539
#A1540
#A1541
#A1542
#A1543

GMAC Message
Authentication
Code

KW, KWP Key Wrapping and
Unwrapping

[SP800-38F] #A1527
#A1528
#A1529

XTS 128, 256 Data Encryption
and Decryption
for Data Storage

[SP800-38E]

DRBG CTR_DRBG:
AES-128,
AES-192,
AES-256
with/without
DF, without
PR

n/a Deterministic
Random Bit
Generation

[SP800-90A] #A1527
#A1528
#A1529

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 15 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

DSA N/A L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Key Pair
Generation

[FIPS186-4]
[FIPS180-4]

#A1544
#A1545
#A1546
#A1547

SHA-224,
SHA-256,
SHA-384,
SHA-512

L=2048, N=224;

Domain
Parameter
Generation
Digital Signature
Generation SHA-256,

SHA-384,
SHA-512

L=2048, N=256;
L=3072, N=256

SHA-224, L=2048, N=224 Domain
Parameter
Verification

SHA-256 L=2048, N=256

SHA-256 L=3072, N=256

SHA-1
SHA-224,
SHA-256,
SHA-384,
SHA-512

L=1024, N=160;
L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Digital Signature
Verification

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Digital Signature
Generation

[FIPS186-4]
[FIPS202]

Vendor
Affirmed

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

L=1024, N=160;
L=2048, N=224;
L=2048, N=256;
L=3072, N=256;

Digital Signature
Verification

KAS-ECC-
SSC

ECC
Ephemeral
Unified
scheme

P-224, P-256, P-384, P-521,
K-233, K-283, K-409, K-571,
B-233, B-283, B-409, B-571

EC Diffie-Hellman
Shared Secret
Computation and
Key Agreement

[SP800-56Ar3] #A1544
#A1545
#A1546
#A1547

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 16 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

KAS-FFC-
SSC

FCC
dhEphem
scheme

ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192

Diffie-Hellman
Shared Secret
Computation and
Key Agreement

[SP800-56Ar3] #A1550

Safe Prime
Key
Generation
and
Verification

 ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192

Key Pair
Generation and
Verification

[SP800-56Ar3]

ECDSA N/A P-224, P-256, P-384, P-521,
K-233, K-283, K-409, K-571,
B-233, B-283, B-409, B-571

Key Pair
Generation

[FIPS186-4]
[FIPS180-4]

#A1544
#A1545
#A1546
#A1547

SHA-224,
SHA-256,
SHA-384,
SHA-512

P-224, P-256, P-384, P-521,
K-233, K-283, K-409, K-571,
B-233, B-283, B-409, B-571

Digital Signature
Generation

SHA3-224
SHA3-256
SHA3-384
SHA3-512

#A1523
#A1524
#A1525

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

P-192, P-224, P-256, P-384,
P-521,
K-163, K-233, K-283, K-409,
K-571,
B-163, B-233, B-283, B-409,
B-571

Public Key
Verification

#A1544
#A1545
#A1546
#A1547

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

P-192, P-224, P-256, P-384,
P-521,
K-163, K-233, K-283, K-409,
K-571,
B-163, B-233, B-283, B-409,
B-571

Digital Signature
Verification

SHA3-224
SHA3-256
SHA3-384
SHA3-512

#A1523
#A1524
#A1525

HMAC

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

160, 224, 256, 384, 512 bits Message
Authentication
Code

[FIPS198-1] #A1544
#A1545
#A1546
#A1547

SHA3-224
SHA3-256
SHA3-384
SHA3-512

224, 256, 384, 512 bits

#A1523
#A1524
#A1525

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 17 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

TLS v1.0,
v1.1 and
v1.2 KDF

SHA-256
SHA-384

N/A Key Derivation [SP800-135] CVL.
#A1544
#A1545
#A1546
#A1547

RSA X9.31 2048, 3072, 4096 Key Pair
Generation

[FIPS186-4]
[FIPS180-4]

#A1544
#A1545
#A1546
#A1547

X9.31 with
SHA-256,
SHA-384,
SHA-512

2048, 3072, 4096 Digital Signature
Generation

X9.31 with
SHA-1,
SHA-256,
SHA-384,
SHA-512

1024, 2048, 3072, 4096 Digital Signature
Verification

PKCS#1v1.5,
PSS with
SHA-224,
SHA-256,
SHA-384,
SHA-512

2048, 3072, 4096 Digital Signature
Generation

PKCS#1v1.5,
PSS with
SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

1024, 2048, 3072, 4096 Digital Signature
Verification

RSA PKCS#1v1.5,
PSS with
SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

2048, 3072, 4096 Digital Signature
Generation

[FIPS186-4]
[FIPS202]

Vendor
Affirmed

PKCS#1v1.5,
PSS with
SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

1024, 2048, 3072, 4096 Digital Signature
Verification

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 18 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

SHS

SHA-1,
SHA-224,
SHA-256
SHA-384,
SHA-512

n/a

Message Digest [FIPS180-4] #A1544
#A1545
#A1546
#A1547

SHA-3 SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512,
SHAKE-128,
SHAKE-256

n/a Message Digest [FIPS202] #A1523
#A1524
#A1525

Triple-DES ECB 192 (two-key Triple-DES) Data Decryption [SP800-67]
[SP800-38A]

#A1519
#A1520
#A1521
#A1522
#A1526

192 (three-key Triple-DES) Data Encryption
and Decryption

CBC, CFB1,
CFB8, CFB64,
OFB

#A1526

CMAC 192 MAC Generation
and Verification

[SP800-67]
[SP800-38B]

PBKDF2 SHA-1, SHA-
224, SHA-
256, SHA-
384, SHA-512

Key length
128-4096 Increment 8

Password-based
key derivation
function

[SP800-132] #A1544
#A1545
#A1546
#A1547

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

#A1523
#A1524
#A1525

SSHKDF SHA-1, SHA-
256, SHA-
384, SHA-512

AES-128, AES-192, AES-256,
Triple-DES

SSH Key
Derivation
Function

[SP800-135] CVL.
#A1519
#A1520
#A1521
#A1522

KTS AES-GCM 128, 256 bits

Key wrapping and
unwrapping

[FIPS197]
[SP800-38D]

#A1535
#A1536
#A1537
#A1538
#A1539
#A1540
#A1541
#A1542
#A1543

AES-CCM 128, 256 bits [FIPS197]
[SP800-38C]

#A1527
#A1528

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 19 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

AES-KW,
KWP

128, 192, 256 bits [FIPS197]
[SP800-38F]

#A1529

AES-CBC and
HMAC-SHA1/
SHA-
224/256/
384/512

AES keys: 128, 256 bits
HMAC keys: 112 bits and
larger

[FIPS197]
[SP800-38A]
[FIPS 198-1]
[FIPS180-4]

AES:
#A1527
#A1528
#A1529
HMAC:
#A1544
#A1545
#A1546
#A1547

KTS Triple-DES-
CBC and
HMAC-SHA1
/224/256/
384/512

Triple-DES keys: 192 bits
HMAC keys: 112 bits and
larger

 [SP800-67]
[FIPS 198-1]
[FIPS180-4]
[SP800-38F]

Triple-
DES:
#A1526
HMAC:
#A1544
#A1545
#A1546
#A1547

KTS-IFC RSA-OAEP
with
SHA-224,
SHA- 256,
SHA-384,
SHA-512,
SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

Mod: 2048, 3072, 4096,
6144, 8192

 [SP800-56Br2] #A1544
#A1545
#A1546
#A1547

KDA HKDF with
SHA-224,
SHA-256,
SHA-384,
SHA-512

 Key Derivation [SP800-56Cr1] #A1516

ENT(NP) [SP800-90B] N/A

Table 8 - Cryptographic Algorithms for Intel(R) Xeon(R) Gold 6226 Processor

3.3.2. Ubuntu 20.04 LTS 64-bit Running on IBM z15

On the platform that runs the IBM Z processor, the module supports the use of CPACF or strict
assembler for AES, SHA and GHASH implementations. If the CPACF is available in the operational
environment, the module uses the support from CPACF automatically. If CPACF is unavailable, the
module uses strict assembler implemented in the module.

The following table shows all algorithms with the associated CAVP certificates for the different
implementations validated in the module. See Appendix B for a description of each implementation.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 20 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

AES ECB 128, 192, 256

Data Encryption
and Decryption

[FIPS197]
[SP800-38A]

#A1522
#A1528
#A1530
#A1533

CBC, CTR,
CFB1, CFB8,
CFB128, OFB

#A1528
#A1530

CMAC MAC Generation
and Verification

[SP800-38B]

CCM Data Encryption
and Decryption

[SP800-38C]

GCM Data Encryption
and Decryption

[SP800-38D] #A1531
#A1548
#A1549

GMAC Message
Authentication
Code

KW, KWP Key Wrapping and
Unwrapping

[SP800-38F] #A1528
#A1530
 XTS 128, 256 Data Encryption

and Decryption
for Data Storage

[SP800-38E]

DRBG CTR_DRBG:
AES-128,
AES-192,
AES-256
with /
without DF,
without PR

n/a Deterministic
Random Bit
Generation

[SP800-90A] #A1528
#A1530

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 21 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

DSA N/A L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Key Pair
Generation

[FIPS186-4]
[FIPS180-4]

#A1532
#A1547

SHA-224,
SHA-256,
SHA-384,
SHA-512

L=2048, N=224;

Domain
Parameter
Generation
Digital Signature
Generation SHA-256,

SHA-384,
SHA-512

L=2048, N=256;
L=3072, N=256

SHA-224, L=2048, N=224 Domain
Parameter
Verification

SHA-256 L=2048, N=256

SHA-256 L=3072, N=256

SHA-1
SHA-224,
SHA-256,
SHA-384,
SHA-512

L=1024, N=160
L=2048, N=224
L=2048, N=256;
L=3072, N=256

Digital Signature
Verification

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Digital Signature
Generation

[FIPS186-4]
[FIPS202]

Vendor
Affirmed

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

L=1024, N=160
L=2048, N=224
L=2048, N=256;
L=3072, N=256

Digital Signature
Verification

KAS-ECC-
SSC

ECC
Ephemeral
Unified
scheme

P-224, P-256, P-384, P-521
K-233, K-283, K-409, K-571,
B-233, B-283, B-409, B-571
112 to 256 bits (see section
6.3 for key strength
caveats)

EC Diffie-Hellman
Shared Secret
Computation and
Key Agreement

[SP800-56Ar3] #A1532
#A1547

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 22 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

KAS-FFC-
SSC

FCC
dhEphem
scheme

ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192
112 to 200 bits (see section
6.3 for key strength
caveats)

Diffie-Hellman
Shared Secret
Computation and
Key Agreement

[SP800-56Ar3] #A1550

Safe Prime
Key
Generation
and
Verification

 ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192
112 to 200 bits

Key Pair
Generation and
Verification

[SP800-56Ar3] #A1550

ECDSA N/A P-224, P-256, P-384, P-521,
K-233, K-283, K-409, K-571,
B-233, B-283, B-409, B-571

Key Pair
Generation

[FIPS186-4]
[FIPS180-4]

#A1532
#A1547

SHA-224,
SHA-256,
SHA-384,
SHA-512

P-224, P-256, P-384, P-521,
K-233, K-283, K-409, K-571,
B-233, B-283, B-409, B-571

Digital Signature
Generation

SHA3-224
SHA3-256
SHA3-384
SHA3-512

#A1525
#A1534

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

P-192, P-224, P-256, P-384,
P-521,
K-163, K-233, K-283, K-409,
K-571,
B-163, B-233, B-283, B-409,
B-571

Public Key
Verification

#A1532
#A1547

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

P-192, P-224, P-256, P-384,
P-521,
K-163, K-233, K-283, K-409,
K-571,
B-163, B-233, B-283, B-409,
B-571

Digital Signature
Verification

 #A1532
#A1547

SHA3-224
SHA3-256
SHA3-384
SHA3-512

#A1525
#A1534
#A1547

HMAC SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

160, 224, 256, 384, 512 bits Message
Authentication
Code

[FIPS198-1] #A1532
#A1547

SHA3-224 224, 256, 384, 512 bits #A1525

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 23 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

SHA3-256
SHA3-384
SHA3-512

#A1534

TLS v1.0,
v1.1 and
v1.2 KDF

SHA-256
SHA-384

N/A Key Derivation [SP800-135] CVL.
#A1532
#A1547

RSA X9.31 2048, 3072, 4096 Key Pair
Generation

[FIPS186-4]
[FIPS180-4]

#A1532
#A1547

X9.31 with
SHA-256,
SHA-384,
SHA-512

2048, 3072, 4096 Digital Signature
Generation

X9.31 with
SHA-1,
SHA-256,
SHA-384,
SHA-512

1024, 2048, 3072, 4096 Digital Signature
Verification

PKCS#1v1.5,
PSS with
SHA-224,
SHA-256,
SHA-384,
SHA-512

2048, 3072, 4096 Digital Signature
Generation

PKCS#1v1.5,
PSS with
SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

1024, 2048, 3072, 4096 Digital Signature
Verification

RSA PKCS#1v1.5,
PSS with
SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

2048, 3072, 4096 Digital Signature
Generation

[FIPS186-4]
[FIPS202]

Vendor
Affirmed

PKCS#1v1.5,
PSS with
SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

1024, 2048, 3072, 4096 Digital Signature
Verification

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 24 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

SHS SHA-1,
SHA-224,
SHA-256
SHA-384,
SHA-512

n/a Message Digest [FIPS180-4] #A1532
#A1547

SHA-3 SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512,
SHAKE-128,
SHAKE-256

n/a Message Digest [FIPS202] #A1525
#A1534

Triple-DES ECB 192 (two-key Triple-DES) Data Decryption [SP800-67]
[SP800-38A]

#A1522
#A1526
#A1533

192 (three-key Triple-DES) Data Encryption
and Decryption

CBC, CFB1,
CFB8, CFB64,
OFB

#A1526

CMAC 192 MAC Generation
and Verification

[SP800-38B]

PBKDF2 SHA-1, SHA-
224, SHA-
256, SHA-
384, SHA-512

Key length
128-4096 Increment 8

Password-based
key derivation
function

[SP800-132] #A1532
#A1547

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

#A1525
#A1534

SSH KDF SHA-1, SHA2-
256, SHA2-
384, SHA2-
512

AES-128, AES-192, AES-256,
Triple-DES

SSH Key
Derivation
Function

[SP800-135] CVL.
#A1522
#A1533

KTS AES-GCM 128, 256 bits

Key wrapping and
unwrapping

[FIPS197]
[SP800-38D]

#A1531
#A1548
#A1549

AES-CCM 128, 256 bits

[FIPS197]
[SP800-38C]

#A1528
#A1530

AES KW,
KWP

128, 192, 256 bits [FIPS197]
[SP800-38F]

AES-CBC and
HMAC-SHA1
/ SHA-224 /
SHA-256/
384/512

AES keys: 128 or 256 bits
HMAC keys: 112 bits and
larger

[FIPS197]
[SP800-38A]
[FIPS 198-1]
[FIPS180-4]

AES:
#A1528
#A1530
HMAC:
#A1532
#A1547

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 25 of 57

Algorithm Mode /
Method

Key Lengths, Curves or
Moduli (in bits)

Use Standard CAVP
Certs

KTS Triple-
DES

Triple-DES-
CBC and
HMAC-
SHA1/224/25
6/ 384/512

Triple-DES keys: 192 bits
HMAC keys: 112 bits and
larger

 [SP800-67]
[FIPS 198-1]
[FIPS180-4]
[SP800-38F]

Triple-
DES:
#A1526
HMAC:
#A1532
#A1547

KTS-IFC RSA-OAEP
with
SHA-224,
SHA- 256,
SHA-384,
SHA-512,
SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

Mod: 2048, 3072, 4096,
6144, 8192

 [SP800-56Br2] #A1532
#A1547

KDA HKDF with
SHA-224,
SHA-256,
SHA-384,
SHA-/512

 Key Derivation
PRF for TLSv1.3

[SP800-56Cr1] #A1516

ENT(NP) [SP800-90B] N/A

Table 9 – Cryptographic Algorithms for IBM z15 Processor

3.3.3. Allowed Algorithms

The following table describes the non-Approved but allowed algorithms in FIPS mode:

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 26 of 57

Algorithm Caveat Use

Key Encapsulation using Encryption and
Decryption Primitives with RSA
PKCS#1v1.5 padding; keys equal or
larger than 2048 bits up to 15360 or
more.

Provides between 112
and 256 bits of
encryption strength

Key Establishment; allowed per
[FIPS140-2_IG] D.9

MD51 n/a Pseudo-random function (PRF)
in TLS v1.0 and v1.1; allowed
per [SP800-52r2]

Table 10 – FIPS-Allowed Cryptographic Algorithms

3.3.4. Non-Approved Algorithms

The table below shows the non-Approved cryptographic algorithms implemented in the module
that are only available in non-FIPS mode.

Algorithm Use

RSA with key size smaller than 2048 bits Key Pair Generation, Digital Signature Generation,
Key Encapsulation

DSA with key size smaller than 2048 bits or
greater than 3072 bits

Key Pair Generation, Domain Parameters
Generation, Digital Signature Generation

DSA with key size smaller than 1024 bits or
greater than 3072 bits

Digital Signature Verification

ECDSA with curves P-192, K-163 or B-163 and
non-NIST curves.

Key Pair Generation, Domain Parameters
Generation, Digital Signature Generation

Diffie-Hellman with key size smaller than 2048
bits

Shared Secret Computation or key agreement

EC Diffie-Hellman with curves P-192, K-163 or
B-163 and non-NIST curves.

Shared Secret Computation or key agreement

SHA-1 Digital Signature generation

HMAC with less than 112 bits key Message Authentication Code

AES in XTS mode with 192-bit key Data Encryption and Decryption

2-key Triple-DES Data Encryption

CMAC with 2-key Triple-DES Authenticated Data Encryption and Decryption

1 According [SP800-52r2], MD5 is allowed to be used in TLS versions 1.0 and 1.1 as the hash function used in the PRF, as
defined in [RFC2246] and [RFC4346].

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 27 of 57

Algorithm Use

“Non-Compliant” multi-buffer or stitch ciphers
using AES in CBC mode with 128 and 256-bit
keys and HMAC-SHA-1 and SHA-256 (available
only in Intel processors with AES-NI capability).

Authenticated Data Encryption and Decryption

ARIA, Blowfish, Camellia, CAST, CAST5,
ChaCha20, DES, RC2, RC4, SEED, SM4

Data Encryption and Decryption

Blake2, MD4, MD5, RMD160, SM3 Message Digest

Chacha20 and Poly1305 Authenticated Data Encryption and Decryption

SM2 Digital Signature Generation and Verification

Table 11 – Non-Approved Cryptographic Algorithms

3.4. Operator Authentication
The module does not implement user authentication. The role of the user is implicitly assumed
based on the service requested.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 28 of 57

4. Physical Security
The module is comprised of software only and therefore this security policy does not make any
claims on physical security.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 29 of 57

5. Operational Environment

5.1. Applicability
The module operates in a modifiable operational environment per FIPS 140-2 level 1 specifications.
The module runs on a commercially available general-purpose operating system executing on the
hardware specified in Table 3 - Tested Platforms.

5.2. Policy
The operating system is restricted to a single operator; concurrent operators are explicitly excluded.

The application that requests cryptographic services is the single user of the module.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 30 of 57

6. Cryptographic Key Management
The following table summarizes the Critical Security Parameters (CSPs) that are used by the
cryptographic services implemented in the module:

Name Generation Entry and Output Zeroization

AES keys The key material is
entered via API
parameter or established
during TLS handshake (as
a KDF TLS derived key).

The key is passed into
the module via API input
parameters in plaintext.

EVP_CIPHER_CTX_free(),
EVP_CIPHER_CTX_reset()

Triple-DES
keys

EVP_CIPHER_CTX_free(),
EVP_CIPHER_CTX_reset()

HMAC keys HMAC_CTX_free()

RSA public and
private keys

The public-private keys
are generated using
FIPS 186-4 Key
Generation method, and
the random value used in
the key generation is
generated using
SP800-90A DRBG.

The key is passed into
the module via API input
parameters in plaintext.
The key is passed out of
the module via API
output parameters in
plaintext.

RSA_free()

DSA public and
private keys

DSA_free()

ECDSA public
and private
keys

EC_KEY_free()

Diffie-Hellman
public and
private keys

The public-private keys
are generated using
SP800-56A Safe Primes
Key Generation method,
and the random value
used in the key
generation is generated
using SP800-90A DRBG.

The key is passed into
the module via API input
parameters in plaintext.
The key is passed out of
the module via API
output parameters in
plaintext.

DH_free()

EC Diffie-
Hellman public
and private
keys

The public-private keys
are generated using the
FIPS 186-4 Key
Generation method, and
the random value used in
the key generation is
generated using SP800-
90A DRBG.

EC_KEY_free()

Shared secret Generated during the
Diffie-Hellman or EC
Diffie-Hellman key
agreement.

None SSL_free(), SSL_clear()

Generated from the
SP800-90A DRBG when
module acts as a TLS
client, for RSA cipher
suites.

Entry: if received by
module as TLS server,
wrapped with server’s
public RSA key;
otherwise no entry.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 31 of 57

Output: if generated by
module as TLS client,
wrapped with server’s
public RSA key;
otherwise, no output.

TLS master
secret

Derived from shared
secret using TLS KDF.

None SSL_free(),
SSL_clear()

Entropy input
string and
seed

Obtained from the
NRBG.

None RAND_DRBG_free()

DRBG internal
state (V, Key)

During DRBG
initialization.

None RAND_DRBG_free()

PBKDF2
Password

N/A The password is passed
into the module via API
input parameters in
plaintext.

OPENSSL_cleanse()

PBKDF2
Derived Key

Derived using the
SP800-132 KDF

The key is passed out of
the module via API
output parameters in
plaintext.

OPENSSL_cleanse()

SSH KDF
Derived Key

Derived using the SP800-
135 SSH KDF.

The key is passed out of
the module via API
output parameters in
plaintext.

EVP_PKEY_CTX_free()

HKDF Derived
Key

Derived using the SP800-
56Cr1 KDF

None EVP_PKEY_CTX_free()

Table 12 – Life cycle of Critical Security Parameters (CSP)

The following sections describe how CSPs, in particular cryptographic keys, are managed during its
life cycle.

6.1. Random Number Generation
The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for the
creation of seeds for asymmetric keys, and server and client random numbers for the TLS protocol.
In addition, the module provides a Random Number Generation service to calling applications.

The DRBG supports the CTR_DRBG mechanisms with key sizes and modes specified in Table 7 and
Table 8. The DRBG is initialized during module initialization; the module loads by default the DRBG
using CTR_DRBG with AES-256 and derivation function without prediction resistance. A different
DRBG mechanism can be chosen through an API function call.

The module uses a Non-Deterministic Random Bit Generator (NRBG) provided by the operational
environment to obtain entropy for the DRBG; the NRBG is located within the module’s physical
boundary but outside of the module’s logical boundary. The NRBG uses CPU jitter as a physical noise
source and is compliant with [SP800-90B]; the NRBG is marked as ENT(NP) in the certificate.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 32 of 57

The module makes use of getrandom() system call, to access the output of NRBG which is used for
seeding the DRBG. The NRBG provides at least 256 bits of entropy to the DRBG during initialization
(seed) and reseeding (reseed).

The module performs DRBG health tests as defined in section 11.3 of [SP800-90A].

Note: According to Linux man pages [LMAN] random(4) and getrandom(2), the getrandom() system
call is prohibited until the Linux kernel has initialized its NRBG during the kernel boot-up. This
blocking behavior is only observed during boot time. When defining systemd units using OpenSSL,
the Crypto Officer should ensure that these systemd units do not block the general systemd
operation as otherwise the entire boot process may be blocked based on the getrandom blocking
behavior.

6.2. Key Generation
The Module provides an SP800-90A-compliant DRBG for creation of key components of asymmetric
keys, and random number generation.

The Key Generation methods implemented in the module for Approved services in FIPS mode is
compliant with [SP800-133] (vendor affirmed).

For generating RSA, DSA and ECDSA keys the module implements asymmetric key generation
services compliant with [FIPS186-4]. A seed (i.e. the random value) used in asymmetric key
generation is directly obtained from the [SP800-90A] DRBG.

The public and private keys used in the EC Diffie-Hellman key agreement schemes are generated
internally by the module using the ECDSA key generation method compliant with [FIPS186-4] and
[SP800-56Ar3]. The Diffie-Hellman key agreement scheme is also compliant with [SP800-56Ar3], and
generates keys using safe primes defined in RFC7919 and RFC3526, as described in the next section.

6.3. Key Agreement / Key Transport / Key Derivation
The module provides Diffie-Hellman and EC Diffie-Hellman shared secret computation, which
consists of SP800-56Ar3 Diffie-Hellman and EC Diffie-Hellman primitives. These security functions
are approved per FIPS 140-2 IG D.8 Scenario X1(1).

The module also provides Diffie-Hellman and EC Diffie-Hellman key agreement schemes that are
used as part of the TLS. Specifically, the key agreement scheme consists of SP800-56Ar3 Diffie-
Hellman and EC Diffie-Hellman primitives (i.e. KAS-SSC) and SP800-135 TLS KDF (CVL) listing in IG
G.20 per FIPS 140-2 IG D.8 Scenario X1(2).

The module now exclusively supports SP800-56Ar3 shared secret computation and key agreement
schemes in FIPS mode of operation. For Diffie-Hellman, the module supports the use of safe primes
from RFC 7919 for domain parameters and key generation that is used by the TLS key agreement
implemented by the module. The module also supports the use of safe primes from RFC3526 that
can be used by the IKE key agreement implemented in the Strongswan module. Note that the
current module only implements the shared secret computation of safe primes used in IKE RFC3526
and not the entire IKE key agreement:

IKEv2 (RFC 3526) TLS (RFC 7919)

MODP-2048 (ID=14) ffdhe2048 (ID = 256)

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 33 of 57

MODP-3072 (ID=15) ffdhe3072 (ID = 257)

MODP-4096 (ID=16) ffdhe4096 (ID = 258)

MODP-6144 (ID=17) ffdhe6144 (ID = 259)

MODP-8192 (ID=18) ffdhe8192 (ID = 260)

The module provides key wrapping using the AES with KW and KWP modes.

The module also provides key wrapping in the context of using the TLS protocol to send and receive
key material in the payload. The key wrapping methods are provided by the TLS record layer either
using an approved authenticated encryption mode (i.e. AES GCM, AES-CCM), or a combination
method including symmetric encryption (i.e. AES or Triple-DES in CBC mode) and an approved
authentication method (i.e. HMAC with SHA); the method depends on the TLS cipher suite
negotiated during the TLS handshake. All methods provided by the TLS cipher suites included in
Appendix A are approved key transport methods according to IG D.9.

The module also provides key encapsulation using the following methods:

• RSA public key encryption and private key decryption with PKCS#1v1.5 padding. This method
is an allowed method per IG D.9 and is used as part of the TLS protocol key exchange.

• RSA public key encryption and private key decryption (KTS-IFC) with OEAP padding.

According to Table 2: Comparable strengths in [SP800-57], the key sizes of AES, Triple-DES, RSA,
Diffie-Hellman and EC Diffie-Hellman provides the following security strength in FIPS mode of
operation:

• AES KW and KWP key wrapping, provides between 128 and 256 bits of encryption strength.

• AES GCM and CCM key wrapping (as part of TLS protocol) provides 128 or 256 bits of
encryption strength.

• Key wrapping using AES encryption in CBC mode with HMAC (as part of TLS protocol)
provides 128 or 256 bits of encryption strength.

• Key wrapping using Triple-DES encryption in CBC mode with HMAC (as part of TLS protocol)
provides 112 bits of encryption strength.

• RSA key wrapping2 with PKCS#1v1.5 padding provides between 112 and 256 bits of
encryption strength.

• RSA key wrapping with OAEP padding provides between 112 and 200 bits of encryption
strength.

• Diffie-Hellman shared secret computation and key agreement provide between 112 and 200
bits of encryption strength.

• EC Diffie-Hellman shared secret computation and key agreement provide between 112 and
256 bits of encryption strength.

The module supports the following key derivation methods according to [SP800-135]:

2 “Key wrapping” is used instead of “key encapsulation” to show how the algorithm will appear in the certificate per IG
G.13.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 34 of 57

• KDF for the TLS protocol. The module implements the pseudo-random functions (PRF) for
TLSv1.0/1.1 and TLSv1.2.

• HKDF for the TLS protocol, compliant with SP800-56Cr1. The module implements the
pseudo-random functions (PRF) for TLSv1.3.

• KDF for the SSH using SHA-1, SHA-256, SHA-384, SHA-512.

The module also supports password-based key derivation (PBKDF). The implementation is compliant
with option 1a of [SP-800-132]. Keys derived from passwords or passphrases using this method can
only be used in storage applications.

Note: As the module supports the size of RSA key pair greater than 2048 bits up to 15360 bits or
more, the encryption strength 256 bits is claimed for RSA key encapsulations.

6.4. Key Entry / Output
The module does not support manual key entry or intermediate key generation key output. The
keys are provided to the module via API input parameters in plaintext form and output via API
output parameters in plaintext form. This is allowed by [FIPS140-2_IG] IG 7.7, according to the “CM
Software to/from App Software via GPC INT Path” entry on the Key Establishment Table.

6.5. Key / CSP Storage
Symmetric keys, HMAC keys, public and private keys are provided to the module by the calling
application via API input parameters, and are destroyed by the module when invoking the
appropriate API function calls.

The module does not perform persistent storage of keys. The keys and CSPs are stored as plaintext
in the RAM. The only exception is the HMAC key used for the Integrity Test, which is stored in the
module and relies on the operating system for protection.

6.6. Key / CSP Zeroization
The memory occupied by keys is allocated by regular memory allocation operating system calls. The
application is responsible for calling the appropriate zeroization functions provided in the module's
API listed in Table 12 . Calling the SSL_free() and SSL_clear() will zeroize the keys and CSPs used in
the TLS protocol and also invoke the module’s API listed in Table 12 automatically to zeroize the
keys and CSPs. The zeroization functions overwrite the memory occupied by keys with “zeros” and
deallocate the memory with the regular memory deallocation operating system call.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 35 of 57

7. Electromagnetic Interference/Electromagnetic Compatibility
(EMI/EMC)
The test platforms listed in Table 3 - Tested Platforms have been tested and found to conform to
the EMI/EMC requirements specified by 47 Code of Federal Regulations, FCC PART 15, Subpart B,
Unintentional Radiators, Digital Devices, Class A (i.e., Business use). These devices are designed to
provide reasonable protection against harmful interference when the devices are operated in a
commercial environment. They shall be installed and used in accordance with the instruction
manual.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 36 of 57

8. Self-Tests
FIPS 140-2 requires that the module perform power-up tests to ensure the integrity of the module
and the correctness of the cryptographic functionality at start up. In addition, some functions
require continuous testing of the cryptographic functionality, such as the asymmetric key
generation. If any self-test fails, the module returns an error code and enters the error state. No
data output or cryptographic operations are allowed in error state.

See section 9.2.9 for descriptions of possible self-test errors and recovery procedures.

8.1. Power-Up Tests
The module performs power-up tests when the module is loaded into memory, without operator
intervention. Power-up tests ensure that the module is not corrupted and that the cryptographic
algorithms work as expected.

While the module is executing the power-up tests, services are not available, and input and output
are inhibited. The module is not available for use by the calling application until the power-up tests
are completed successfully.

If any power-up test fails, the module returns the error code listed in Table 18 and displays the
specific error message associated with the returned error code, and then enters error state. The
subsequent calls to the module will also fail - thus no further cryptographic operations are possible.
If the power-up tests complete successfully, the module will return 1 in the return code and will
accept cryptographic operation service requests.

8.1.1. Integrity Tests

The integrity of the module is verified by comparing an HMAC-SHA-256 value calculated at run time
with the HMAC value stored in the .hmac file that was computed at build time for each software
component of the module. If the HMAC values do not match, the test fails and the module enters
the error state.

8.1.2. Cryptographic Algorithm Tests

The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the
Approved mode of operation, using the Known Answer Tests (KAT), Pair-wise Consistency Tests
(PCT), as well as DRBG health tests shown in the following table:

Algorithm Power-Up Tests

AES • KAT AES ECB mode with 128-bit key, encryption

• KAT AES ECB mode with 128-bit key, decryption

Triple DES • KAT three-key Triple-DES ECB mode, encryption

• KAT three-key Triple-DES ECB mode, decryption

CMAC • KAT AES CMAC with 128, 192 and 256 bit keys, MAC generation

• KAT three-key Triple-DES, MAC generation

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 37 of 57

Algorithm Power-Up Tests

SHS • KAT SHA-1 and SHA-512

• KAT SHA3-256, SHA3-512

• KAT SHAKE128 and SHAKE256
Note: SHA-224 and SHA-384 are not required per IG 9.4. SHA-256 is covered in the
Integrity Test which is allowed per IG 9.3.

HMAC Note: HMAC is covered in the Integrity Test which is allowed per IG 9.3 and 9.4

DSA • PCT DSA with L=2048, N=256 and SHA-256

ECDSA • PCT ECDSA with P-256 and SHA-256

• PCT ECDSA with K-233 and SHA-256

RSA • KAT RSA with 2048-bit key, PKCS#1v1.5 scheme and SHA-256, signature
generation

• KAT RSA with 2048-bit key, PKCS#1v1.5 scheme and SHA-256, signature
verification

• KAT RSA with 2048-bit key, public key encryption

• KAT RSA with 2048-bit key, private key decryption

DRBG • KAT CTR_DRBG with AES with 256 bit key, without PR, with DF

• KAT CTR_DRBG with AES with 256 bit key, without PR, without DF

• Health Test

EC Diffie-
Hellman

• Primitive “Z” Computation KAT with P-256 curve

Diffie-
Hellman

• Primitive “Z” Computation KAT with 3072-bit key

TLS KDF • KAT KDF for TLSv1.0 and v1.1

• KAT KDF for TLSv1.2

SSH KDF • KAT using HMAC-SHA-256

PBKDF2 • KAT using SHA-256

HKDF • KAT KDF for TLSv1.3

Table 13 – Self-Tests

For the KAT, the module calculates the result and compares it with the known value. If the answer
does not match the known answer, the KAT is failed and the module enters the Error state.

For the PCT, if the signature generation or verification fails, the module enters the Error state. As
described in section 3.3, only one AES or SHA implementation is available at run-time.

The KATs cover the different cryptographic implementations available in the operating
environment.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 38 of 57

8.2. On-Demand Self-Tests
On-Demand self-tests can be invoked by powering-off and reloading the module which cause the
module to run the power-up tests again. During the execution of the on-demand self-tests, services
are not available and no data output or input is possible.

8.3. Conditional Tests
The module performs conditional tests on the cryptographic algorithms, using the Pair-wise
Consistency Tests (PCT), shown in the following table:

Algorithm Conditional Test

DSA key generation • PCT using SHA-256, signature generation and verification.

ECDSA key generation • PCT using SHA-256, signature generation and verification.

RSA key generation • PCT using SHA-256, signature generation and verification.
• PCT using encryption and decryption

Table 14 – Conditional Tests

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 39 of 57

9. Guidance

9.1. Crypto Officer Guidance
The binaries of the module are contained in the Ubuntu packages for delivery. The Crypto Officer
shall follow this Security Policy to configure the operational environment and install the module to
be operated as a FIPS 140-2 validated module.

The following Ubuntu packages contain the FIPS validated module:

Processor
Architecture

Ubuntu packages

x86_64 libssl1.1-1.1.1f_1ubuntu2.fips.7.1_amd64.deb

libssl1.1-hmac-1.1.1f_1ubuntu2.fips.7.1_amd64.deb

z15 libssl1.1-1.1.1f_1ubuntu2.fips.7.1_s390.deb

libssl1.1-hmac-1.1.1f_1ubuntu2.fips.7.1_s390.deb

Table 15 – Ubuntu packages

The libssl-doc_1.1.1f_1ubuntu2.fips.7.1_all.deb Ubuntu package contains the man pages for the
module.

Note: The prelink is not installed on Ubuntu, by default. For proper operation of the in-module
integrity verification, the prelink should be disabled.

9.1.1. Operating Environment Configurations

To configure the operating environment to support FIPS, the following shall be performed with the
root privilege:

Install the following linux-fips and fips-initramfs Ubuntu packages depending on the target
operational environment:

Processor
Architecture

Ubuntu packages

x86_64 fips-initramfs-generic_0.0.15+generic1_amd64.deb

linux-image-5.4.0-1024.28+recert1-fips 5.4.0-1024.28+recert1_amd64.deb

z15 fips-initramfs-generic_0.0.15+generic1_s390.deb

linux-image-5.4.0-1024.28+recert1-fips 5.4.0-1024.28+recert1_s390.deb

Table 16 – Prerequisite Ubuntu packages

(1) Add fips=1 to the kernel command line.

• For x86_64 systems, create the file /etc/default/grub.d/99-fips.cfg with the content:
GRUB_CMDLINE_LINUX_DEFAULT=”$GRUB_CMDLINE_LINUX_DEFAULT fips=1”.

• For z systems, edit /etc/zipl.conf file and append the "fips=1" in the parameters line for
the specified boot image.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 40 of 57

(2) If /boot resides on a separate partition, the kernel parameter bootdev=UUID=<UUID of
partition> must also be appended in the aforementioned grub or zipl.conf file. Please see the
following Note for more details.

(3) Update the boot loader.

• Run the update-grub command (not necessary on S390X systems with zipl loader).

(4) Run reboot to reboot the system with the new settings.

Now, the operating environment is configured to support FIPS operation. The Crypto Officer should
check the existence of the file, /proc/sys/crypto/fips_enabled, and that it contains “1”. If the file
does not exist or does not contain “1”, the operating environment is not configured to support FIPS
and the module will not operate as a FIPS validated module properly.

Note: If /boot resides on a separate partition, the kernel parameter bootdev=UUID=<UUID of
partition> must be supplied. The partition can be identified with the command df /boot. For
example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdb2 241965 127948 101525 56% /boot

The UUID of the /boot partition can be found by using the command grep /boot /etc/fstab. For
example:

$ grep /boot /etc/fstab

/boot was on /dev/sdb2 during installation

UUID=cec0abe7-14a6-4e72-83ba-b912468bbb38 /boot ext2 defaults 0 2

Then, the UUID shall be added in the /etc/default/grub.d/99-fips.cfg. For example:
GRUB_CMDLINE_LINUX_DEFAULT="$GRUB_CMDLINE_LINUX_DEFAULT fips=1 bootdev=UUID=Insert

boot UUID"

Optionally, the following packages may be also installed:

• The openssl Ubuntu package provides the command line interface.

• The libssl1.1-dev package provides include files that are necessary to build applications using
the module.

9.1.2. Module Installation

Canonical distributes the module via Personal Package Archives (PPA), whose access is granted to
users with a valid subscription. In order to obtain a subscription and download the FIPS validated
version of the module, please email "sales@canonical.com" or contact a Canonical representative,
https://www.ubuntu.com/contact-us. Canonical provides specific instructions to configure the
system to get access to the corresponding PPA.

Once the operating environment is configured following the instructions provided in section 9.1.1,
and configuration to access the PPA is complete, the Crypto Officer can install the Ubuntu packages
containing the module listed in Table 15 using the Advanced Package Tool (APT) with the following
command line:

$ sudo apt-get install libssl1.1 libssl1.1-hmac libssl-doc

All the Ubuntu packages are associated with hashes for integrity check. The integrity of the Ubuntu
package is automatically verified by the packing tool during the installation of the module. The
Crypto Officer shall not install the package if the integrity fails.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 41 of 57

9.2. User Guidance
In order to run in FIPS mode, the module must be operated using the FIPS Approved services, with
their corresponding FIPS Approved and FIPS allowed cryptographic algorithms provided in this
Security Policy (see section 3.2 Services). In addition, key sizes must comply with [SP800-131A].

9.2.1. TLS

The module implements TLS versions 1.0, 1.1, 1.2 and 1.3. The TLS protocol implementation
provides both server and client sides. In order to operate in FIPS mode, digital certificates used for
server and client authentication shall comply with the restrictions of key size and message digest
algorithms imposed by [SP800-131A].

9.2.2. AES-GCM’s IV

In case the module’s power is lost and then restored, the key used for the AES GCM encryption or
decryption shall be redistributed.

The nonce_explicit part of the IV does not exhaust the maximum number of possible values for a
given session key. The design of the TLS protocol in this module implicitly ensures that the
nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.

The AES GCM IV generation is in compliance with the [RFC5288] and shall only be used for the TLS
protocol version 1.2 to be compliant with [FIPS140-2_IG] IG A.5, provision 1 (“TLS protocol IV
generation”). Moreover, the module is compliant with Section 3.3.1 of [SP800-52r2].

9.2.3. AES-XTS

The AES algorithm in XTS mode can be only used for the cryptographic protection of data on storage
devices, as specified in [SP800-38E]. The length of a single data unit encrypted with the XTS-AES shall
not exceed 2²⁰ AES blocks that is 16MB of data.

To meet the requirement in [FIPS140-2_IG] A.9, the module implements a check to ensure that the
two AES keys used in XTS-AES algorithm are not identical.

Note: AES-XTS shall be used with 128 and 256-bit keys only. AES-XTS with 192-bit keys is not an
Approved service.

9.2.4. Triple-DES

[SP800-67] imposes a restriction on the number of 64-bit block encryptions performed under the
same three-key Triple-DES key.

When the three-key Triple-DES is generated as part of a recognized IETF protocol, the module is
limited to 220 64-bit data block encryptions. This scenario occurs in the following protocols:

• Transport Layer Security (TLS) versions 1.1 and 1.2, conformant with [RFC5246]

• Secure Shell (SSH) protocol, conformant with [RFC4253]

• Internet Key Exchange (IKE) versions 1 and 2, conformant with [RFC7296]

In any other scenario, the module cannot perform more than 216 64-bit data block encryptions.

The user is responsible for ensuring the module’s compliance with this requirement.

9.2.5. Key derivation using SP800-132 PBKDF
The module provides password-based key derivation (PBKDF), compliant with SP800-132. The
module supports option 1a from section 5.4 of [SP800-132], in which the Master Key (MK) or a

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 42 of 57

segment of it is used directly as the Data Protection Key (DPK). In accordance to [SP800-132], the
following requirements shall be met.

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not be
used for other purposes. The length of the MK or DPK shall be of 112 bits or more.

• A portion of the salt, with a length of at least 128 bits, shall be generated randomly using the
SP800-90A DRBG.

• The iteration count shall be selected as large as possible; as long as the time required to
generate the key using the entered password is acceptable for the users. The minimum value
shall be 1000.

• Passwords or passphrases, used as an input for the PBKDF, shall not be used as
cryptographic keys.

• The length of the password or passphrase shall be of at least 20 characters, and shall consist
of lower-case, upper-case and numeric characters. The probability of guessing the value is
estimated to be 1/62^20 = 10^36, which is less than 2^112.

The calling application shall also observe the rest of the requirements and recommendations
specified in [SP800-132].

9.2.6. API Functions

Passing “0” to the FIPS_mode_set() API function is prohibited.

Executing the CRYPTO_set_mem_functions() API function is prohibited as it performs like a null
operation in the module.

The FIPS required selftests that run during power-on of the module will render
OPENSSL_init_crypto() useless in application code since it cannot be run first.

Calling DH_generate_parameters_ex() will return an error in FIPS mode since the module only
supports safe primes Diffie-Hellman parameters. When generating a key pair using some safe
primes domain parameters, the NID of the safe prime group shall be used. DH_check(),
DH_check_ex(), DH_check_params(), DH_check_params_ex() will only check that an appropriate
safe prime NID has been set when in FIPS mode.

9.2.7. Use of ciphers

The following ciphers (usually obtained by calling the EVP_get_cipherbyname() function) use
multiblock implementations of the AES, HMAC and SHA algorithms that are not validated by the
CAVP; therefore, they cannot be used in FIPS mode of operation.

Cipher Name NID

AES-128-CBC-HMAC-SHA1 NID_aes_128_cbc_hmac_sha1

AES-256-CBC-HMAC-SHA1 NID_aes_256_cbc_hmac_sha1

AES-128-CBC-HMAC-SHA256 NID_aes_128_cbc_hmac_sha256

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 43 of 57

AES-256-CBC-HMAC-SHA256 NID_aes_256_cbc_hmac_sha256

Table 17- Ciphers not allowed in FIPS mode of operation

9.2.8. Environment Variables

OPENSSL_ENFORCE_MODULUS_BITS

As described in [SP800-131A], less than 2048 bits of DSA and RSA key sizes are disallowed by NIST.
Setting the environment variable OPENSSL_ENFORCE_MODULUS_BITS can restrict the module to only
generate the acceptable key sizes of RSA and DSA. If the environment variable is set, the module
can generate 2048 or 3072 bits of RSA key, and at least 2048 bits of DSA key.

OPENSSL_FIPS_NON_APPROVED_MD5_ALLOW

As described in [SP800-52r2], MD5 is allowed to be used in TLS versions 1.0 and 1.1 as the hash
function used in the PRF, as defined in [RFC2246] and [RFC4346]. By default, the module disables
the MD5 algorithm. Setting the environment variable OPENSSL_FIPS_NON_APPROVED_MD5_ALLOW can
enable the MD5 algorithm in the module. The MD5 algorithm shall not be used for other purposes
other than the PRF in TLS version 1.0 and 1.1.

9.2.9. Handling FIPS Related Errors

When the module fails any self-test, the module will return an error code to indicate the error and
enters error state that any further cryptographic operation is inhibited. Errors occurred during the
self-tests and conditional tests transition the module into an error state. Here is the list of error
codes when the module fails any self-test, in error state or not supported in FIPS mode:

Error Events Error Codes/Messages

When the Integrity Test fails at the
power-up

FIPS_R_FINGERPRINT_DOES_NOT_MATCH (111)
“fingerprint does not match”

When the AES, Triple-DES, SHA-1, SHA-
512 KAT fails at the power-up

FIPS_R_SELFTEST_FAILED (134)
“selftest failed”

When the KAT for RSA fails, or the PCT for
ECDSA or DSA fails at the power-up

FIPS_R_TEST_FAILURE (137)
“test failure”

When the KAT of DRBG fails at the power-
up

FIPS_R_NOPR_TEST1_FAILURE (145)
“nopr test1 failure”

When the KAT of Diffie-Hellman or EC
Diffie-Hellman fails at the power-up

0

When the new generated RSA, DSA or
ECDSA key pair fails the PCT

FIPS_R_PAIRWISE_TEST_FAILED (127)
“pairwise test failed”

When the SSLv2.0 or SSL v3.0 are called SSL_R_ONLY_TLS_ALLOWED_IN_FIPS_MODE (297)
“only tls allowed in fips mode”

When the module is in error state and any
cryptographic operation is called

FIPS_R_FIPS_SELFTEST_FAILED (115)
“fips selftest failed”

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 44 of 57

FIPS_R_SELFTEST_FAILED (134)
“selftest failed”

When the AES key and tweak keys for
XTS-AES are the same

EVP_R_XTS_DUPLICATED_KEYS (183)
“xts duplicated keys”

Table 18 – Error Events, Error Codes and Error Messages

These errors are reported through the regular ERR interface of the modules and can be queried by
functions such as ERR_get_error(). See the OpenSSL man pages for the function description.

When the module is in the error state and the application calls a crypto function of the module that
cannot return an error in normal circumstances (void return functions), the error message: “OpenSSL
internal error, assertion failed: FATAL FIPS SELFTEST FAILURE” is printed to stderr and the
application is terminated with the abort() call. The only way to recover from this error is to restart
the application. If the failure persists, the module must be reinstalled.

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 45 of 57

10. Mitigation of Other Attacks

10.1. Blinding Against RSA Timing Attacks
RSA is vulnerable to timing attacks. In a configuration where attackers can measure the time of RSA
decryption or signature operations, blinding must be used to protect the RSA operation from that
attack.

The module provides the API functions RSA_blinding_on() and RSA_blinding_off() to turn the
blinding on and off for RSA. When the blinding is on, the module generates a random value to form
a blinding factor in the RSA key before the RSA key is used in the RSA cryptographic operations.

Please note that the DRBG must be seeded prior to calling RSA_blinding_on() to prevent the RSA
Timing Attack.

10.2. Weak Triple-DES Keys Detection
The module implements the DES_set_key_checked() for checking the weak Triple-DES key and the
correctness of the parity bits when the Triple-DES key is going to be used in Triple-DES operations.
The checking of the weak Triple-DES key is implemented in the API function DES_is_weak_key() and
the checking of the parity bits is implemented in the API function DES_check_key_parity(). If the
Triple-DES key does not pass the check, the module will return -1 to indicate the parity check error
and -2 if the Triple-DES key matches to any value listed below:

static const DES_cblock weak_keys[NUM_WEAK_KEY] = {

 /* weak keys */

 {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},

 {0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE},

 {0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E},

 {0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1},

 /* semi-weak keys */

 {0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE},

 {0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01},

 {0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1},

 {0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E},

 {0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1},

 {0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01},

 {0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE},

 {0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E},

 {0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E},

 {0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01},

 {0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE},

 {0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1}

};

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 46 of 57

Appendix A. TLS Cipher Suites
The module supports the following cipher suites for the TLS protocol. Each cipher suite defines the
key exchange algorithm, the bulk encryption algorithm (including the symmetric key size) and the
MAC algorithm.

Cipher Suite Reference

TLS_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_DSS_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_DSS_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DHE_DSS_WITH_AES_128_CBC_SHA RFC3268

TLS_DHE_DSS_WITH_AES_256_CBC_SHA RFC3268

TLS_DHE_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DHE_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_anon_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_anon_WITH_AES_256_CBC_SHA RFC3268

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_AES_256_CBC_SHA RFC4492

TLS_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_RSA_WITH_AES_128_GCM_SHA256 RFC5288

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 47 of 57

Cipher Suite Reference

TLS_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_DSS_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_DSS_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 RFC5288

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_DH_anon_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_anon_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_anon_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_anon_WITH_AES_256_GCM_SHA384 RFC5288

RSA_WITH_AES_128_CCM RFC5116

RSA_WITH_AES_256_CCM RFC5116

DHE_RSA_WITH_AES_128_CCM RFC5116

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 48 of 57

Cipher Suite Reference

DHE_RSA_WITH_AES_256_CCM RFC5116

RSA_WITH_AES_128_CCM_8 RFC6655

RSA_WITH_AES_256_CCM_8 RFC6655

DHE_RSA_WITH_AES_128_CCM_8 RFC6655

DHE_RSA_WITH_AES_256_CCM_8 RFC6655

ECDHE_ECDSA_WITH_AES_128_CCM RFC7251

ECDHE_ECDSA_WITH_AES_256_CCM RFC7251

ECDHE_ECDSA_WITH_AES_128_CCM_8 RFC7251

ECDHE_ECDSA_WITH_AES_256_CCM_8 RFC7251

TLS_PSK_WITH_3DES_EDE_CBC_SHA RFC4279

TLS_PSK_WITH_AES_128_CBC_SHA RFC4279

TLS_PSK_WITH_AES_256_CBC_SHA RFC4279

DHE_PSK_WITH_3DES_EDE_CBC_SHA RFC4279

DHE_PSK_WITH_AES_128_CBC_SHA RFC4279

DHE_PSK_WITH_AES_256_CBC_SHA RFC4279

RSA_PSK_WITH_3DES_EDE_CBC_SHA RFC4279

RSA_PSK_WITH_AES_128_CBC_SHA RFC4279

RSA_PSK_WITH_AES_256_CBC_SHA RFC4279

PSK_WITH_AES_128_GCM_SHA256 RFC5487

PSK_WITH_AES_256_GCM_SHA384 RFC5487

DHE_PSK_WITH_AES_128_GCM_SHA256 RFC5487

DHE_PSK_WITH_AES_256_GCM_SHA384 RFC5487

RSA_PSK_WITH_AES_128_GCM_SHA256 RFC5487

RSA_PSK_WITH_AES_256_GCM_SHA384 RFC5487

PSK_WITH_AES_128_CBC_SHA256 RFC5487

PSK_WITH_AES_256_CBC_SHA384 RFC5487

DHE_PSK_WITH_AES_128_CBC_SHA256 RFC5487

DHE_PSK_WITH_AES_256_CBC_SHA384 RFC5487

RSA_PSK_WITH_AES_128_CBC_SHA256 RFC5487

RSA_PSK_WITH_AES_256_CBC_SHA384 RFC5487

PSK_WITH_AES_128_CCM RFC6655

PSK_WITH_AES_256_CCM RFC6655

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 49 of 57

Cipher Suite Reference

DHE_PSK_WITH_AES_128_CCM RFC6655

DHE_PSK_WITH_AES_256_CCM RFC6655

PSK_WITH_AES_128_CCM_8 RFC6655

PSK_WITH_AES_256_CCM_8 RFC6655

DHE_PSK_WITH_AES_128_CCM_8 RFC6655

DHE_PSK_WITH_AES_256_CCM_8 RFC6655

ECDHE_PSK_WITH_3DES_EDE_CBC_SHA RFC5489

ECDHE_PSK_WITH_AES_128_CBC_SHA RFC5489

ECDHE_PSK_WITH_AES_256_CBC_SHA RFC5489

ECDHE_PSK_WITH_AES_128_CBC_SHA256 RFC5489

ECDHE_PSK_WITH_AES_256_CBC_SHA384 RFC5489

Table 19 – SSL/TLS Ciphersuites

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 50 of 57

Appendix B. CAVP certificates
The following tables show all CAVP certificates referenced in this Security Policy for both testing
platforms, including the description of their implementation name.

CAVP
Cert.

Implementation Name

#A1516 OpenSSL for TLSv1.3 implementation

#A1519 OpenSSL using AVX2 SHA.

#A1520 OpenSSL using AVX SHA.

#A1521 OpenSSL using SSSE3 SHA.

#A1522 OpenSSL using assembler SHA.

#A1523 OpenSSL using AVX2 SHA-3.

#A1524 OpenSSL using Intel AVX-512 SHA-3.

#A1525 OpenSSL using assembler SHA-3.

#A1526 OpenSSL using Generic C non-optimized Triple-DES.

#A1527 OpenSSL using Intel AES-NI AES.

#A1528 OpenSSL using assembler AES.

#A1529 OpenSSL using constant-time bit slice AES.

#A1535 OpenSSL using Intel AES-NI AES using GCM with AVX GHASH.

#A1536 OpenSSL using Intel AES-NI AES using GCM with Intel CLMULNI.

#A1537 OpenSSL using Intel AES-NI AES using assembler block mode.

#A1538 OpenSSL using Assembler AES using GCM with AVX GHASH.

#A1539 OpenSSL using assembler AES using GCM with Intel CLMULNI.

#A1540 OpenSSL using Assembler AES using GCM with assembler GHASH.

#A1541 OpenSSL using Constant-time bit slice AES using GCM with AVX GHASH.

#A1542 OpenSSL using Constant-time bit slice AES using GCM with Intel CLMULNI.

#A1543 OpenSSL using Constant-time bit slice AES using GCM with assembler GHASH.

#A1544 OpenSSL using AVX2 SHA.

#A1545 OpenSSL using AVX SHA.

#A1546 OpenSSL using SSSE3 SHA.

#A1547 OpenSSL using Assembler SHA.

Table 18 – Algorithm implementations in Intel® Xeon® Gold 6226 processor

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 51 of 57

CAVP
Cert.

Implementation Name

#A1516 OpenSSL for TLSv1.3 implementation

#A1522 OpenSSL using assembler SHA.

#A1525 OpenSSL using assembler SHA-3.

#A1526 OpenSSL using Generic C non-optimized Triple-DES.

#A1528 OpenSSL using assembler AES.

#A1530 OpenSSL using CPACF AES.

#A1531 OpenSSL using CPACF AES GCM.

#A1532 OpenSSL using CPACF SHA.

#A1533 OpenSSL using CPACF SHA.

#A1534 OpenSSL using CPACF SHA-3.

#A1547 OpenSSL using Assembler SHA.

Table 20 - Algorithm implementations in IBM z15 processor

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 52 of 57

Appendix C. Glossary and Abbreviations
AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

API Application Program Interface

APT Advanced Package Tool

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining-Message Authentication Code

CFB Cipher Feedback

CLMUL Carry-less Multiplication

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CPACF CP Assist for Cryptographic Function

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption Standard

DF Derivation Function

DSA Digital Signature Algorithm

DTLS Datagram Transport Layer Security

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

EMI/EMC Electromagnetic Interference/Electromagnetic Compatibility

FCC Federal Communications Commission

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

GPC General Purpose Computer

HMAC Hash Message Authentication Code

IG Implementation Guidance

KAS Key Agreement Schema

KAT Known Answer Test

KDF Key Derivation Function

KW Key Wrap

KWP Key Wrap with Padding

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 53 of 57

MAC Message Authentication Code

NIST National Institute of Science and Technology

NRBG Non-Deterministic Random Bit Generator

OFB Output Feedback

PAA Processor Algorithm Acceleration

PAI Processor Algorithm Implementation

PCT Pair-wise Consistency Test

PPA Personal Package Archive

PSS Probabilistic Signature Scheme

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SSSE3 Supplemental Streaming SIMD Extensions 3

TLS Transport Layer Security

XTS XEX-based Tweaked-codebook mode with ciphertext Stealing

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 54 of 57

Appendix D. References

FIPS140-2 FIPS PUB 140-2 - Security Requirements For Cryptographic Modules
May 2001
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

FIPS140-2_IG Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module
Validation Program
May 2021
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

FIPS180-4 Secure Hash Standard (SHS)
August 2015
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
July 2013
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
July 2008
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

FIPS202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions
August 2015
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

LMAN Linux Man Pages
http://man7.org/linux/man-pages/

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1
February 2003
http://www.ietf.org/rfc/rfc3447.txt

RFC2246 The TLS Protocol Version 1.0
January 1999
https://www.ietf.org/rfc/rfc2246.txt

RFC3268 Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security
(TLS)
June 2002
https://www.ietf.org/rfc/rfc3268.txt

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 55 of 57

RFC4279 Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)
December 2005
https://www.ietf.org/rfc/rfc4279.txt

RFC4346 The Transport Layer Security (TLS) Protocol Version 1.1
April 2006
https://www.ietf.org/rfc/rfc4346.txt

RFC4492 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security
(TLS)
May 2006
https://www.ietf.org/rfc/rfc4492.txt

RFC5116 An Interface and Algorithms for Authenticated Encryption
January 2008
https://www.ietf.org/rfc/rfc5116.txt

RFC5246 The Transport Layer Security (TLS) Protocol Version 1.2
August 2008
https://tools.ietf.org/html/rfc5246.txt

RFC5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS
August 2008
https://tools.ietf.org/html/rfc5288.txt

RFC5487 Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter
Mode
March 2009
https://tools.ietf.org/html/rfc5487.txt

RFC5489 ECDHE_PSK Cipher Suites for Transport Layer Security (TLS)
March 2009
https://tools.ietf.org/html/rfc5489.txt

RFC6655 AES-CCM Cipher Suites for Transport Layer Security (TLS)
July 2012
https://tools.ietf.org/html/rfc6655.txt

RFC7251 AES-CCM Elliptic Curve Cryptography (ECC) Cipher Suites for TLS
June 2014
https://tools.ietf.org/html/rfc7251.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of
Operation Methods and Techniques
December 2001
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication
May 2005
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 56 of 57

SP800-38C NIST Special Publication 800-38C - Recommendation for Block Cipher Modes of
Operation: the CCM Mode for Authentication and Confidentiality
May 2004
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC
November 2007
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

SP800-38E NIST Special Publication 800-38E - Recommendation for Block Cipher Modes of
Operation: The XTS AES Mode for Confidentiality on Storage Devices
January 2010
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block Cipher Modes of
Operation: Methods for Key Wrapping
December 2012
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800-52r2 NIST Special Publication 800-52 Revision 2 - Guidelines for the Selection,
Configuration, and Use of Transport Layer Security (TLS) Implementations
August 2019
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

SP800-56Ar3 NIST Special Publication 800-56A Revision 3 - Recommendation for Pair Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography
April 2018
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

SP800-56Br2 NIST Special Publication 800-56B Revision 2 - Recommendation for Pair-Wise
Key-Establishment Schemes Using Integer Factorization Cryptography
March 2019
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf

SP800-56Cr1 NIST Special Publication 800-56C Revision 1 – Recommendation for Key-
Derivation Methods in Key-Establishment Schemes
August 2020
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf

SP800-57 NIST Special Publication 800-57 Part 1 Revision 5 - Recommendation for Key
Management Part 1: General
May 2020
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

SP800-67 NIST Special Publication 800-67 Revision 2 - Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher
November 2017
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf

20.04 OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 57 of 57

SP800-90A NIST Special Publication 800-90A - Revision 1 - Recommendation for Random
Number Generation Using Deterministic Random Bit Generators
June 2015
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

SP800-131A NIST Special Publication 800-131A – Revision 2 - Transitioning the Use of
Cryptographic Algorithms and Key Lengths
March 2019
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

SP800-135 NIST Special Publication 800-135 Revision 1 - Recommendation for Existing
Application-Specific Key Derivation Functions
December 2011
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf

